

Data Sheet EB-WR284-02

E-Bend CPR284 F-F

Author
RevisionC. Weil
00
01.02.2016Page1 of 2

Parameter	Value		
Footprint Drawing No.	FP-10074141		
Product Type	Waveguide Bend		
Configuration	E-Bend 90°		
Center Frequency f ₀	2856 MHz and 2998 MHz		
Bandwidth BW	± 10 MHz		
Forward Peak Power	20 MW max.		
Forward Average Power	15 kW max.		
Reverse Power	100% at any phase		
Insertion Loss	\leq 0.05 dB		
Return Loss	≥ 30 dB		
VSWR	< 1.065		
RF Waveguide	WR284		
RF Flanges / Connectors	2x CPR284F, flat, 10 holes \varnothing 6.5 mm		
Cooling System	none		
Waveguide Dielectric Filling Gas	SF6		
Gas Pressure	nominal:	3 bar absolute	
	maximum :	4 bar absolute	
Gas Leak Rate (Helium)	< 5·10 ⁻⁴ mbar l/s		
	device pressurized with He gas at 2.5 bar gauge		
Ambient Temperature	operating :	10°C to 40°C	

	storage :	0°C to 60°C	
Relative Humidity	< 80%, non-condensing		
Body Material	Aluminium		
Surface Finish	none		
Dimensions	see footprint drawing, bend radius 56.6 mm		
Weight	0.5 kg approximately		
Mounting Orientation	any		
Accessories included	none		

Ordering Code

EB-WR284-02

Notes:

- 1 <u>Low-Power Acceptance Tests</u>: The following tests will be performed at the AFT factory before shipment: (1) small-signal network analyzer measurements of input return loss vs. frequency at room temperature, (2) He-gas leak rate testing.
- 2 <u>Documentation</u>: An owner's manual is supplied for providing information on the installation, operation and maintenance of the device. The documentation will also include specification, footprint drawing.

As an *option to be ordered separately*, extended documentation is available in terms of a low-power RF test report (viewgraphs S-parameters vs. frequency) or written factory test protocol.

Rev.	Remark	Date	Name
00	Initial	01.02.2016	C. Weil