# Product Characteristics

## Characteristics

### RF Signals
- Center Frequency $f_0$: 2856 MHz
- Bandwidth $\Delta f$: ± 10 MHz
- Forward Peak Power (FWD and REF): +38 dBm max.
- Forward Average Power (FWD and REF): +20 dBm max.
- Pulse Width: 4 to 5 µs typical
- Suppression of Second Harmonic: > 30 dB

### Output signals
- AFC A and AFC B: +3.75 V ± 0.75 V *
- Matching of AFC A and AFC B within: 10% max.
- Error Voltage AFC B – AFC A: 6.5 V ± 1 V ** (peak-to-peak), see Fig. 2

### Phase Control
- Phase Shifting Range: 400 deg min.
- Phase Control Voltage Vctrl: 0 V to 13 V (<1 mA), 15 V max.
- Phase-Voltage Sensitivity: approx. +35 deg/V, see Fig. 3 for details

### Bias Voltage
- +24 VDC (50..60 mA typical)

### Mechanical Data
- Dimensions: 131 mm x 96 mm x 27 mm
- Weight: 370 g ± 10%
- Mounting holes/threads: 4x M4, see footprint drawing

### Ambient Temperature Range
- Operating: +15°C to +50°C
- Storage: -40°C to +80°C

## Interfaces

### Signals
- RF Forward Power (FWD): SMA female connector, 50 Ω
- RF Reverse Power (REF): SMA female connector, 50 Ω
- AFC A: SMA female connector
- AFC B: SMA female connector

### Bias and Control Voltage
- Connector type: ODU MINI-SNAP Series L 6.5mm, 3-pin, female, see Fig. 4 for pin assignment
- Accessories: 1x mating connector (male), for cable assembly instructions see P000191886

### Footprint Drawing No.
- FP-100059
The AFC (Automatic Frequency Control) circuit module is a key component within a feedback control loop of linear accelerator (LINAC) systems. It provides a control signal for the frequency tuning of a magnetron at the resonant frequency of the accelerator cavity. A compact microwave integrated circuit processes the RF forward (FWD) and reflected (REF) signal picked up between magnetron and accelerator cavity. As illustrated in Fig. 1, the module generates two output signals AFC A and AFC B. The differential error signal AFC B – AFC A acts in proportion to the phase difference of the two RF input signals. It forms a reliable control variable, which is used for a frequency tuning of the magnetron at the resonant frequency of the accelerator. The AFC provides an electronically tunable RF phase shifter. The purpose of this phase shifter is to set the phase relationship between the FWD and REFL signal such that the AFC allows for equal frequency correction on both side of the resonance frequency.

**Notes:**

* for $P_{\text{FWD}} = 4\text{W}$ and $P_{\text{REF}} = 0\text{W}$ or $P_{\text{FWD}} = 0\text{W}$ and $P_{\text{REF}} = 4\text{W}$, $\Delta f = \pm 5\text{MHz}$, both AFC A and AFC B terminated with 2 k$\Omega$ loads each

** for $P_{\text{FWD}} = P_{\text{REF}} = 4\text{W}$, $\Delta f = \pm 5\text{MHz}$, both AFC A and AFC B terminated with 2 k$\Omega$ loads each

Fig. 1: Block diagram of the AFC circuit

Fig. 2: Typical AFC error curve
Fig. 3: Typical phase shift vs. control voltage Vctrl at room temperature

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Voltage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bias</td>
<td>+24 VDC</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>----</td>
</tr>
<tr>
<td>3</td>
<td>Vctrl</td>
<td>0 V to +13 V</td>
</tr>
</tbody>
</table>

Fig. 4: Pin assignment of connector for bias and control voltage. The figure shows a top view of the connector on the housing side.

Handling & Operating Instructions

(1) This device contains ESD sensitive RF detector diodes and ICs. The ESD rating is class 1B (100 V max.). Provisions for ESD protection must be made, accordingly. Handle with care to avoid static discharge to the pins Vctrl and Vias in particular.

(2) Do not exceed the max. allowed RF input power.

(3) Do not exceed the rated bias supply voltages.

(4) Faulty wiring of the connecting cable could cause damage to the device.